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Abstract

The aim of this work is to introduce the concept of the confidence bound via the fraction-of-time
probability approach. This approach allows to use information coming from only one realization
of the phenomena under study while the observation time is increasing. The construction of the
empirical and a large-sample confidence interval is presented and its implications for quantile
prediction is studied.

1 Introduction

An alternative signal analysis framework that does not resort to random processes is the fraction-
of-time (FOT) probability approach [4]. In such an approach, statistical parameters are defined
through infinite-time averages of signals (i.e., single functions of time) rather than ensemble
averages of random processes.

The adoption of the FOT probability approach is motivated by the fact that in several appli-
cations, e.g. time series in finance, signal processing, and climatology, multiple realizations of a
stochastic process are not at disposal of the experimenter. Rather, there is only one realization
that can be assumed to be observed for an increasing-length time interval.

The differences between the FOT and stochastic approach have a variety of implications in the
study of properties of inferential techniques involved. For example, in the FOT probability
framework a natural way to define estimators is through considering finite-time averages of the
same quantities involved in the infinite-time averages. Thus, the kind of convergence of the
estimators to be considered as the time of the observation approaches infinity is the convergence
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of the sequence of the finite-time averages, that is, ‘pointwise,’ in the ‘temporal mean-square
sense’ [15], or in the ‘sense of generalized functions (distributions)’ [11]. On the contrary, in the
stochastic process framework, the convergence must be demonstrated in the mean-square sense,
almost everywhere sense or in the weak convergence sense.

The FOT probability approach was first introduced in [15] with reference to time-invariant statis-
tics of ordinary functions of time. Later, it was developed in [3] and [8], and then extended to the
case of distributions (generalized functions) in [11] . Moreover, in [16] an isometric isomorfism
(Wold isomorfism) between a stationary stochastic process and the Hilbert space generated by
a single sample path was singled out and a rigorous link between the FOT probability and the
stochastic process frameworks in the stationary case was established. The case of time-variant
FOT statistics of almost-cyclostationary (ACS) time-series was widely treated in [4], [5] with
reference to the second-order statistics and in [7], [13] for the higher-order statistics. Finally,
the Wold isomorfism was extended to the case of cyclostationary time-series in [9]. A further
development in the FOT probability theory for nonstationary signals was very recently presented
in [10]. In that paper a more general class of nonstationary time-series called the generalized
almost-cyclostationary (GACS) time-series has been introduced and characterized.

The apper is organized as follows. In Section 2, general concepts and definitions of the FOT prob-
ability framework are reviewed. Section 3 is devoted to construction of the confidence bounds
using the FOT probability. The problem of predicting quantiles (without the independence and
same distribution assumption) is presented in Section 4. Finally, simulation experiment to cor-
roborate the proposed predictors are described in Section 5. Conclusions are drawn in Section
6.

2 General definitions

Let us consider a real-valued function x(·) that is Lebesgue measurable on the real axis R.

Definition 2.1 The empirical fraction-of-time probability distribution function FT (t; ξ;x) of
x(u) observed on the time interval [t, t+ T ] is defined as

FT (t; ξ;x)
4
=

meas {u ∈ [t, t+ T ] : x(u) ≤ ξ}
meas {u ∈ [t, t+ T ]}

=
1
T

∫ t+T

t
U(ξ − x(u)) du , (1)

where meas{·} denotes the Lebesgue measure and

U(t)
4
=
{

1 t ≥ 0,
0 elsewhere.

(2)

It represents the proportion of time where x(u) ≤ ξ while u ∈ [t, t+ T ].

In this section we assume that the function x(t) is fixed, therefore we will drop it from the
notation whenever possible.
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It can be easily shown that the function FT (t; ξ) defined in (1) is a valid cumulative distribution
function. In fact, it assumes values in the set [0, 1], is a nondecreasing function of ξ and

lim
ξ→−∞

FT (t; ξ) = 0 , (3a)

lim
ξ→+∞

FT (t; ξ) = 1 , (3b)

lim
ξ→ξ0+

FT (t; ξ) = FT (t; ξ0) . (3c)

From the cumulative distribution function (1) the corresponding probability density function
can be defined as

fT (t; ξ)
4
=

d
dξ
FT (t; ξ)

=
1
T

∫ t+T

t
δ(ξ − x(u)) du , (4)

where the derivation operation and the second equality must be intended in the sense of gener-
alized functions (distributions).

The cumulative distribution function (1) and the probability density function (4) can be used to
express statistical functions of the signal x(t). For example, the expected value of the distribution
FT is given by

E {x(u), u ∈ [t, t+ T ]} 4
=

∫ +∞

−∞
ξfT (t; ξ) dξ

=
∫ +∞

−∞
ξ

1
T

∫ t+T

t
δ(ξ − x(u)) du dξ

=
1
T

∫ t+T

t

∫ +∞

−∞
ξδ(ξ − x(u)) dξ du

=
1
T

∫ t+T

t
x(u) du

≡ 〈x(u)〉u∈[t,t+T ] , (5)

that is, it is coincident with the time average of the function x(u) in the interval [t, t + T ]. In
the derivation of (5) it has been assumed that the order of limit and integration operation can
be interchanged and the sampling property of the Dirac delta function has been exploited.

A natural question for the function FT (t; ξ) in Definition 2.1 is to study its asymptotic behaviour
when T →∞.

Definition 2.2. Assume that limT→∞ FT (t; ξ) exists. The (limit) fraction-of-time probability
distribution function F (t; ξ) is defined as

F (t; ξ)
4
= lim

T→∞
FT (t; ξ)

3



= lim
T→∞

1
T

∫ t+T

t
U(ξ − x(u)) du

= lim
T→∞

1
T

∫ T

0
U(ξ − x(t+ t′)) dt′ . (6)

The above function can be interpreted as the proportion of time in which the values of x(t),
when t ranges in R, are less or equal to ξ.

The limit in Definition 2.2 exists for a large class of functions, for example for x(·) nonnegative
and increasing to infinity when t does so. For a complete mathematical treatment of the functions
for which the limit in (6) exists the reader is referred to the paper of Urbanik [14]. The two
cases that will be treated in some cases in this paper are the almost periodic functions [1] and
stepwise functions.

Fact 2.3. Assume that for each t > 0 the limit in (6) exists. Then it does not depend on t.

Proof. We have the following obvious equality:

1
T

∫ t+T

t
U(ξ − x(u)) du− 1

T

∫ T

0
U(ξ − x(u)) du

=
1
T

∫ t+T

T
U(ξ − x(u)) du− 1

T

∫ t

0
U(ξ − x(u)) du. (7)

Taking T →∞ we get the desired result. The same result can be found if t < 0. The Fact 2.3.
allows us to drop t as the argument of F (t; ξ).

Note that the limit function F (ξ) is in turn a valid cumulative distribution function since the
same properties of FT (t; ξ) hold. Thus, the (limit) probability density function can be defined
as

f(ξ)
4
=

d
dξ
F (ξ)

= lim
T→∞

1
T

∫ t+T

t
δ(ξ − x(u)) du . (8)

In the following , we will turn our attention to the specific form of the FOT distribution for
stepwise function.

Definition 2.4. The function xs(t) is called stepwise if it is of the form

xs(t) =
∞∑
k=0

akI(t− kTs) (9)

where ak are finite constants and the function I(·) is the indicator function of the interval [0, Ts].

Fact 2.5. The empirical fraction of time distribution FT (t; ξ) of the stepwise function xs has
the following form:

FT (t; ξ) =
Ts
T

p−1∑
k=r+1

U(ξ − ak) +R(t, T ; ξ) , (10)
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where, for each t > 0, p = [T+t
Ts

], r = [ tTs ], [b] being the integer part of b and R(t, T ; ξ) tends to
zero when T →∞.

Proof. We have that

FT (t; ξ)
4
=

1
T

∫ T+t

t
U(ξ − xs(u)) du

=
1
T

∫ (r+1)Ts

t
U(ξ − xs(u)) du+

1
T

∫ pTs

(r+1)Ts

U(ξ − xs(u)) du

+
1
T

∫ t+T

pTs

U(ξ − xs(u)) du

=
Ts
T

p−1∑
k=r+1

U(ξ − ak) +R(t, T ; ξ). (11)

where

R(t, T ; ξ)
4
=

1
T

∫ (r+1)Ts

t
U(ξ − xs(u)) du+

1
T

∫ t+T

pTs

U(ξ − xs(u)) du

=
(r + 1)Ts − t

T
U(ξ − ar) +

t+ T − pTs
T

U(ξ − ap). (12)

Now, it easy to see that for each t > 0 and ξ ∈ R it results |R(t, T ; ξ)| ≤ Ts
T and this proves

the result.

Theorem 2.6. Assume that the coefficients ak belong to the finite alphabet {A1, . . . , AM} with

A1 < · · · < AM and the limit FOT probabilities pi
4
= Prob{ak = Ai} exist. Then the limit

function F exists.

Proof. For ξ < A1 the function F is obviously zero. For A1 ≤ ξ < A2, accounting for (11), it
results

FT (t, ξ) =
Ts
T

p−1∑
k=r+1

U(ξ − ak) +R(t, T ; ξ)

=
1

p− r − 2
{number of ak = A1 , k ∈ {r + 1, . . . , p− 1}}+R(t, T ; ξ) . (13)

Thus, in the limit for T →∞ one has

F (ξ) = p1 , A1 ≤ ξ < A2 . (14)

For Ai ≤ ξ < Ai+1 it results

FT (t, ξ) =
1

p− r − 2
{number of ak = A1 , k ∈ {r + 1, . . . , p− 1}}

+
1

p− r − 2
{number of ak = A2 , k ∈ {r + 1, . . . , p− 1}}

+ · · ·

+
1

p− r − 2
{number of ak = Ai , k ∈ {r + 1, . . . , p− 1}}+R(t, T ; ξ) (15)
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and, hence, in the limit for T →∞ one has

F (ξ) =
i∑

j=1

pj , Ai ≤ ξ < Ai+1 . (16)

Remark. The FOT distributions FT and F can be understood in the following sense. First, we
have a Lebesgue measurable function x(t). This enables us to construct a probability measure
PT corresponding to the observations of {x(t) : 0 ≤ t ≤ T}. The measure PT is defined on R
equipped with the σ-field generated by the sets {t ∈ R : x(t) ≤ c; 0 ≤ t ≤ T, c ∈ R}. The
natural link between PT and FT is established via the equality

PT {x(t) ≤ c} 4= FT (c),

where FT (c) can be calculated from the Definition 2.1. Identical simple considerations can be
done to illicit the link between the FOT distribution F and the measure P obtained as the limit
of PT for T →∞, provided that such limits exist.

Assume now that we have at our disposal N real valued measurable functions x1, . . . , xN and
let us fix them for the remainder of this paragraph.

Definition 2.6. The Nth-order FOT joint cumulative distribution function is defined as:

F (ξ1, . . . , ξN , τ1, . . . , τN )
4
= lim

T→∞

1
T

∫ t+T

t

N∏
i=1

U(ξi − xi(u+ τi)) du . (17)

The function above can be interpreted as the fraction of time where jointly x1(u + τ1) ≤ ξ1,
· · ·, xN (u + τN ) ≤ ξN for u in R and τ1, . . . , τN fixed. It is easy to see that the function
defined in (17) is a distribution function since it assumes values in [0, 1], is right-continuous,
non-decreasing with respect to each variable ξi. Moreover, the function defined in (17) verifies
the consistency conditions, that is, the joint cumulative distribution function of any subset of
time-series xn(t + τn) with n ∈ M ⊂ {1, . . . , N} can be obtained from (17) in the limit when
the ξn such that n is not in M is set to infinity.

From (17) it follows that the Nth-order FOT joint probability density function for x1, . . . , xN is
given by

f(ξ1, ..., ξN , τ1, . . . , τN )
4
=

∂N

∂ξ1 · · · ∂ξN
F (ξ1, ..., ξN , τ1, . . . , τN )

= lim
T→∞

1
T

∫ T

0

N∏
i=1

δ(ξn − x(t+ τi + t′)) dt′ . (18)

TheNth-order joint probability density functions allows to evaluate the joint statistical functions
of the functions x1(t + τ1), · · · , xN (t + τN ). In particular, the expected value of the product
x1(t+ τ1)x2(t+ τ2) is given by

E {x(t+ τ1)x(t+ τ2)}
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4
=

∫ +∞

−∞

∫ +∞

−∞
ξ1ξ2f(ξ1, ξ2, τ1, τ2) dξ1 dξ2

=
∫ +∞

−∞

∫ +∞

−∞
ξ1ξ2 lim

T→∞

1
T

∫ t+T

t
δ(ξ1 − x1(u+ τ1))δ(ξ2 − x2(u+ τ2)) du dξ1 dξ2

= lim
T→∞

1
T

∫ t+T

t

∫ +∞

−∞
ξ1δ(ξ1 − x1(u+ τ1)) dξ1

∫ +∞

−∞
ξ2δ(ξ2 − x2(u+ τ2)) dξ2 du

= lim
T→∞

1
T

∫ t+T

t
x1(u+ τ1)x(u+ τ2) du

≡
〈
x1(t′ + τ)x2(t′)

〉
t′
, (19)

which is conincident with the temporal cross-correlation function between x1(t) and x2(t). In
the derivation of (19), it has been assumed that the order of limit and integration operations
can be interchanged and in the last equality t′ = u+ τ2 and τ = τ1 − τ2 have been set.

Equations (5) and (19) show the duality existing between the FOT probability approach and
the classical stochastic (stationary) process approach. In the former, the statistical functions
are defined through infinite-time averages of a single function of time (or a lag product of more
functions of time), while in the latter the analogous statistical functions are defined as ensem-
ble averages of a stationary stochastic process (or a lag product of more stationary stochastic
processes). When the stochastic process is also ergodic, then the functions defined in both the
approaches are coincident, provided that the function of time is a nonpathological sample path
of the ergodic stationary stochastic process.

It is worthwhile to underline that the functions (6), (8), (17), and (18) do not depend on the
variable t and, hence, are suitable to describe the statistics of signals for which a stationary
model is assumed.

The almost-cyclostationary case

Let us consider N real-valued measurable functions x1(t), . . . , xN (t). If the set Γ� ,� of all the
frequencies of the additive sinewave components contained in the function

Ux(1t+ τ , ξ)
4
=

N∏
n=1

U(ξn − xn(t+ τn)) (20)

is countable for each of the column vectors τ
4
= [τ1, ..., τN ]T ∈ RN and ξ

4
= [ξ1, · · · , ξN ]T ∈ RN ,

then the time-series are said to be jointly generalized almost-cyclostationary in the strict sense
[10]. In (20), 1

4
= [1, . . . , 1]T and x

4
= [x1(t+ τ1), . . . , xN (t+ τN )]T. Moreover, if the union over

all τ ∈ RN and ξ ∈ RN of the sets Γ� ,� is a countable set Γ, then the above functions are jointly
almost-cyclostationary in the strict sense. Furthermore, it is shown in [6] that the function

F (1t+ τ , ξ)
4
= E{α} {Ux(1t+ τ , ξ)}
=

∑
γ∈Γ

〈
Ux(1v + τ , ξ) e−j2πγv

〉
v
ej2πγt (21)
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is a valid cumulative distribution function for each fixed value of t and τ . In (21), 〈·〉v denotes the
bilateral time average operator with respect to v and E{α}{·} is the almost-periodic component
extraction operator, that is, the operator that extracts all the additive sinewave components in
the function specified as its argument.

The Nth-order derivative (in the sense of generalized functions) of the cumulative distribution
function is defined as

f(1t+ τ , ξ)
4
=

∂N

∂ξ1 · · · ∂ξN
F (1t+ τ , ξ)

= E{α}
{

N∏
n=1

δ(ξn − xn(t+ τn))

}
(22)

and turns out to be a valid probability density function for each fixed value of t and τ .

The set Γ contains at least one element γ = 0. If γ = 0 is the only element of Γ, then the N
functions are said to be jointly stationary in the strict sense. If all γ’s different from zero are
integer multiples of a value γ0, then the N functions are said to be jointly cyclostationary in the
strict sense with the period 1/γ0. If the set Γ contains incommensurate elements, then the N
functions are said to be jointly almost-cyclostationary in the strict sense. Analogous definitions
can be given with reference to a single signal (i.e., x1(t) ≡ · · · ≡ xN (t) ≡ x(t)).

Let us consider the special case of a single signal x(t). If the function x(t) is almost-periodic
then the function (20) is also almost periodic and hence it coincides with its almost-periodic
component (21). Therefore, the probability density function (22) can be expressed as

f(1t+ τ , ξ) =
N∏
n=1

δ(ξn − x(t+ τn)) , (23)

that is, the almost-periodic functions are the deterministic time-series in the FOT probability
framework. From this property it follows that the almost-periodic extraction operator E{α}{·}
extracts the deterministic component of its argument, that is, it plays the same role played by
the expectation operation in the stochastic process approach. Thus, it can be shown that the
almost-periodic function

R(1t+ τ )
4
= E{α}

{
N∏
n=1

xn(t+ τn)

}
=

∑
α∈A

R
α(τ )ej2παt , (24)

which is called the temporal moment function, is a valid moment function, that is, it can be
expressed as (see [7])

R(1t+ τ ) =
∫
RN

N∏
n=1

ξnf(1t+ τ , ξ) dξ . (25)
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In (24), A ⊆ Γ and the functions

R
α(τ )

4
=

〈
N∏
n=1

xn(t+ τn)e−j2παt
〉
t

(26)

are referred to as the cyclic temporal cross-moment functions (CTCMFs).

The set A of the α such that the CTCMF is different form zero can be possibly empty. If α = 0
is the only element of A, then the N functions are said to be jointly stationary in the wide
sense. If all α’s different from zero are integer multiples of a number α0, then the N functions
are said to be jointly cyclostationary in the wide sense with period 1/α0. If the set A contains
incommensurate elements, then the functions are said to be jointly almost-cyclostationary in
the wide sense. Analogous definitions can be given with reference to a single function.

It can be shown that if g[t; ξ] is an almost-periodically time-varying real-valued function of
ξ ∈ RN , it results that

E{α} {g[t;x1(t+ τ1), . . . , xN (t+ τN )]} =
∫
RN

g[t; ξ]f(1t+ τ , ξ) dξ, (27)

which is called the fundamental theorem of the almost-periodic component extraction [4], [5],
[6].

Finally, it is worth emphasizing that two ore more functions are said to be statistically inde-
pendent in the FOT probability sense if their joint probability density function factorizes as the
product of the marginal probability density functions [4], [5]. Consequently, any almost-periodic
function (wich is a deterministic signal in the FOT probability framework) is statistically inde-
pendent on any other function including itself (see [6]).

3 Confidence bounds in the FOT probability approach

The problem of finding confidence bounds in the FOT probability approach does not differ
from the analogous problem in the classical stochastic approach. In this section we assume the
following definition of quantile:

Definition 3.1. Let F be an arbitrary distribution function. Then the α-quantile qα of F is
defined as :

qα = inf{s ∈ R : F (s) ≥ α} , (28)

where 0 < α < 1. Similarly, we define the inverse F−1 of a given distribution function F as
F−1(u) = inf{s ∈ R : F (s) ≥ u} for u ∈ (0, 1).

For more details see e.g. [12], Chapter 1.

From the previous section it was clear that the calculation of the empirical FOT probability
distribution depended on t, the starting point of the observation. To simplify the notation in
this Section we will assume that t is fixed and we will drop it from the notation. The Definition
3.1 can be applied to both empirical FOT distribution and the FOT distribution. For the
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empirical FOT distribution FT an α-quantile qTα is such a number that the proportion of time
that x(u) ≤ qTα while u ∈ [t, t + T ] is equal to or greater than α. Similar interpretation can be
derived for the limiting FOT distribution F . The question of finding qTα corresponds in finance
to finding a Value-at-Risk for a given time series of returns x(·) on a given asset, or, in signal
theory, to finding an empirical threshold corresponding to a given false alarm rate α.

Definition 3.2. The FOT confidence interval [L,U ] at the confidence level α is defined as the
interval between L = α

2 -quantile and U = (1− α
2 )-quantile of the FOT distribution F .

Similarly, we have

Definition 3.3. The emprical FOT confidence interval [LT , UT ] at the confidence level α is
defined as the interval between LT = α

2 -quantile and UT = (1 − α
2 )-quantile of the empirical

FOT distribution FT .

The calculation of the FOT quantile follows the same lines as in the ’classical case’. For more
information, see e.g. [12].

The central result of this section is the following

Theorem 3.4. Assume that the significance level α for the calculation of the quantile qα of
the limit FOT distribution F is a continuity point of F−1. Then the empirical quantile qTα is a
consistent estimate of qα.

Proof. We use the well-known results regarding the weak convergence of the distribution
functions (see [12], p. 19). Since we know (via the construction of FOT distribution F ) that FT
converges to F then from the quoted result it follows that qTα → qα.

To analyze a situation when F−1 may have some discontinuties, (e.g., in the desired significance
level α) consider the following:

Example 3.5. Let xs(t) be a stepwise function in the sense of the Definition 2.4. Assume
also, that for each k, ak ∈ {A1, . . . , AM} with A1 < · · · < AM , that is coefficients ak come
from a finite set. Denote now pi = F (Ai)− F (Ai−1), where F is the FOT distribution of xs(·).
Obviously, F is stepwise in this case and so is F−1. By convention, assume also that F (A0) = 0
and that neither of pi is zero. The calculation of the empirical quantile can be accomplished
using the following

Quantile estimation algorithm.

Step 1. For each 1 ≤ i ≤ M , accounting for (11), calculate the empirical probabilities pTi
4
=

FT (Ai)−FT (Ai−1) directly using the observations of the function xs(·) in the interval [t, t+ T ],
since xs(t) = ak for t ∈ [kTs, (k + 1)Ts].

Step 2. Find the integer k such that

k∑
i=1

pTi < α ≤
k+1∑
i=1

pTi .
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Step 3. Put the empirical α-quantile qTα = Ak+1.

It should not be overlooked that in the algortihm above the probabilities pTi as well as FT depend
on the starting point t.

We have the following

Corollary 3.6. The empirical quantile qTα calculated via the above algorithm is consistent, i.e.
qTα → qα.

Proof. If the selected significance level α is a continuity point of F−1 then we can simply apply
Theorem 3.4. If this is not the case, then qα is a point where F has a discontinuity as well. In
our case (stepwise function xs(t) as in Example 3.5) this means that there exists such k that

α =
k∑
i=1

pi.

On the other hand we know that for each i and each fixed t, pTi → pi therefore we get the desired
result.

Remark 3.7. It is easy to see that the quantile estimation algorithm presented above is a
simple application of the Definition 3.1. Therefore, the calculation of the quantile in a general
situation (arbitraty x) will follow similar routine.

4 Prediction of quantiles in the FOT probability approach

In this section we would like to present a method of prediction of the quantile using the FOT
probability approach. The general assumption is that we observe a function x(u) on the interval
[t, t+ T ]. Then, the basic question is:

Having observed the function until time t+ T , how to predict its
empirical FOT quantile at time t+ T + δ ?

The answer to the question above will be based entirely on the previously presented method
of calculating quantiles and empirical FOT distributions. In our opinion, the FOT approach
has a lot of advantages over the classical, stochastic methods. First of all, no assumption on
independence of observations or stationarity of distributions is necessary.

This Section will start with the presentation of a method of predicting quantile for a case when
the observed signal xs is stepwise function in the sense of Definition 2.4 with ak ∈ {A1, . . . , Ak}.
We will call this case a finite alphabet case. Then, in the latter part of this Section we will put
forward a quantile calculation for any continuous signal x(t).
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4.1 Finite alphabet case

Let us first note the following useful fact:

Fact 4.1. Assume that t and T are fixed and assume that the function xs(t) is stepwise plus
ak ∈ {A1, . . . AM} with A1 < · · · < AM – the finite alphabet for the coefficients ak. Let the
integers p and r have the same meaning as in Fact 2.5. Therefore

pTi = FT (Ai)− FT (Ai−1)

=
Ts
T

p−1∑
k=r+1

[U(Ai − ak)− U(Ai−1 − ak)]

+
(r + 1)Ts − t

T
[U(Ai − ar)− U(Ai−1 − ar)]

+
t+ T − pTs

T
[U(Ai − ap)− U(Ai−1 − ap)] . (29)

Observe that the last two terms of the equality (29) are of the order T−1.

Proof. The desired results follows from (11) and (12).

In the formula (29) we use the convention that U(A0 − x) = 0 for any x.

The method of predicting quantile is based on the study of behaviour of probabilities pTi when
the length of observation changes from T to T + δ. Obviously, the precision of the prediction
depends on how large the horizon δ is. Here we will assume that δ = Ts, that is, the horizon
of the prediction is equal to the length of the window. In finance, this corresponds e.g., to con-
structing a one-day predictor of Value-at-Risk, when the data are gathered daily and possible
values of the return x(·) come from a finite set. With that assumption in mind we have the
following

Fact 4.2. Let t, T and xs be as in Fact 4.1. Assume also that the time horizon δ of the
prediction is equal to Ts. Therefore, accountig for (11) it results

FT+Ts(ξ) =
Ts

T + Ts

p∑
k=r+1

U(ξ − ak) +R(t, T + Ts; ξ)

=
T

T + Ts
FT (ξ)− t+ T − (p+ 1)Ts

T + Ts
U(ξ − ap) +

t+ T − pTs
T + Ts

U(ξ − ap+1) (30)

and, hence,

pT+Ts
i = FT+Ts(Ai)− FT+Ts(Ai−1)

=
T

T + Ts
pTi +R1(t, T ; i) +R2(t, T ; i) , (31)
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where
R1(t, T ; i)

4
= − t+ T − (p+ 1)Ts

T + Ts
[U(Ai − ap)− U(Ai−1 − ap)] (32)

and
R2(t, T ; i)

4
=
t+ T − pTs
T + Ts

[U(Ai − ap+1)− U(Ai−1 − ap+1)] . (33)

Note that in (31) for t = rTs and t+ T = pTs it results R2(t, T ; i) = 0 and the term R1(t, T ; i)
cannot be evaluated since it depends on the unobservable value ap. If pTs < t+ T < (p+ 1)Ts,
then R1(t, T ; i) can be evaluated whereas R2(t, T ; i) cannot since it depends on the unobservable
value ap+1.

Corollary 4.3. From Fact 4.2 it follows that for each 1 ≤ i ≤M and for t, T and xs such as in
Fact 4.1 we have

k∑
i=1

pT+Ts
i =

T

T + Ts

k∑
i=1

pTi +
k∑
i=1

[R1(t, T ; i) +R2(t, T ; i)] , (34)

where, accountig for the fact that for arbitrary aq

k∑
i=1

[U(Ai − aq)− U(Ai−1 − aq)] =
{

1 A1 ≤ aq ≤ Ak
0 otherwise

(35)

it results
k∑
i=1

|Rn(t, T ; i)| ≤ Ts
T + Ts

, n = 1, 2 . (36)

Moreover, (34) can be written as

k∑
i=1

pT+Ts
i = A(T, Ts; k) + ε B(t, T, Ts) , (37)

where

A(T, Ts; k) =


T

T + Ts

k∑
i=1

pTi t = rTs , t+ T = pTs ,

T

T + Ts

k∑
i=1

pTi +
k∑
i=1

R1(t, T ; i) otherwise

(38)

and

B(t, T, Ts) =


Ts

T + Ts
t = rTs , t+ T = pTs ,

t+ T − pTs
T + Ts

otherwise
(39)

in which the value of ε ∈ {0, 1} depends on the unobservable symbol.
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The problem of finding the quantile qT+Ts
α consists in calculating the integer k such that

k∑
i=1

pT+Ts
i < α ≤

k+1∑
i=1

pT+Ts
i (40)

and to put qT+Ts
α = Ak+1. However, on the basis of the observations in [t, t + T ] we cannot

calculate the probabilities pT+Ts
i but only pTi . Therefore, the problem of predicting the quantile

is calculating a predictor q̂T+Ts
α only using observations from the interval [t, t+T ]. Consider the

following
Quantile prediction algorithm for stepwise functions

Step 1 For each i ∈ {1, . . . ,M} calculate the empirical probabilities pTi .

Step 2 Make the following procedure:

for ε′ ∈ {0, 1}

for ε′′ ∈ {0, 1}

find k such that

A(T, Ts; k) + ε′B(t, T, Ts) < α ≤ A(T, Ts; k + 1) + ε′′B(t, T, Ts) (∗)

if disequality (∗) is true then

q̂T+Ts
α (ε′, ε′′) = Ak+1

end

end

end

In the above algorithm there are four cases to consider: ε′ = ε′′ (two cases) and ε′ 6= ε′′ (two
cases). Therefore the proposed prediction algorithm provides at least one and at most four
possible predicted values for the quantile qα.

In that context, a natural question arises:
Given a certain precision θ, how large T is sufficient to claim that the quantile stabilizes at that
precision, that is |q̂T+Ts

α − qTα | ≤ θ ?
This question has a simple answer for stepwise functions xs as in Fact 4.1.

Remark 4.4. Assume that we would like to predict a quantile qT+Ts
α with a given precision θ,

0 < θ < 1. Then it suffices to take the sample from the signal of the length T such that

T >
4− θ
θ

and put q̂T+Ts
α

4
= qTα , where qTα is a quantile calculated according to the algorithm presented in

Section 3.

14



Proof. It suffices to see that, according to Corollary 4.3

|
k∑
i=1

(pT+Ts
i − pTi )| ≤ 4Ts

T + Ts
.

Therefore, at a precision θ the quantile calculation algorithm for the distribution FT+Ts will
not be changed if we replace

∑k
i=1 p

T+Ts
i by

∑k
i=1 p

T
i . This argument can be seen more clearly

noting that solving the inequality (*) in the quantile prediction algorithm for a significance level
α is equivalent to finding a quantile from the empirical fraction-of-time probability FT on the
level α − θ, where θ is sufficiently small. This last observation is true do to the property of
left-continuity of F−1.

4.2 Continuous functions

In this part we will analyze the quantile prediction algorithm for any continuous function x.
As it was seen in the previous subsection, the quantile prediction algorithm produces a (finite)
set of values for the predictor q̂T+Ts

α . It is easy to deduce that in the case of the continuous
function x we will end up with the interval of possible predictors. This intution will be clarified
in this subsection. We start with the technical result, convienient while calculating the predicted
quantile.

Fact 4.5. Assume that the function x generating the FOT distributions FT and F is continuous.
Assume also that the time horizon δ is arbitrary and let FT+δ be the empirical fraction of time
distribution generated by x on the interval [t, t+ T + δ]. Then

FT+δ(ξ) =
T

T + δ
FT (ξ) +

1
T + δ

∫ t+T+δ

t+T
U(ξ − x(u)) du. (41)

Proof of this Fact is standard and follows from Fact 2.5.

It is easy to see that the second term of the right hand side of (41) is smaller than δ
T+δ . In

another words,

FT+δ(ξ) ∈ [
T

T + δ
FT (ξ),

T

T + δ
(FT (ξ) +

δ

T
)].

This observation allows us to formulate the following
Quantile prediction algorithm for continuous functions

Step 1. Given the observation of the continuous function x calculate the FT .
Step 2. Calculate

q̂T+δ
α (1) = inf{ξ :

T

T + δ
FT (ξ) +

δ

T + δ
≥ α}
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and
q̂T+δ
α (2) = inf{ξ :

T

T + δ
FT (ξ) ≥ α}.

It is easy to see that the above algorithm produces the interval of predictions of the form
[q̂T+δ(1), q̂T+δ(2)] and that the length of this interval, δ

T+δ converges to zero while T → ∞ for
any fixed time horizon δ. This yields the following

Remark 4.6. Assume that we would like to predict a quantile qT+δ
α with a given precision θ,

0 < θ < 1. Then it suffices to take the sample from the signal of the length T such that

T >
δ · (1− θ)

θ

and put q̂T+δ
α

4
= qTα , where qTα is a quantile calculated according to the algorithm presented in

Section 3.
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Appendix A

In this Appendix the convergence in the temporal mean-square sense of time averages and
integrals is discussed. A more comprehensive treatment can be found in [15] for stationary
time-series and in [2] for almost-cyclostationary time series. The more general convergence in
the sense of distributions (generalized functions) of statistical functions defined starting from a
single time-series is treated in [11].

In this paper, unless otherwise indicated, all the time averages are assumed to exist and to be
convergent in the temporal mean-square sense (t.m.s.s.), that is, given a time-series z(t) and
defined

zβ(t)T
4
=

1
T

∫ t+T/2

t−T/2
z(u) e−j2πβu du , (A.1)

zβ
4
= lim

T→∞

1
T

∫ +T/2

−T/2
z(u) e−j2πβu du , (A.2)

it is assumed that
lim
T→∞

zβ(t)T = zβ (t.m.s.s.) , ∀β ∈ R (A.3)

that is,
lim
T→∞

〈
|zβ(t)T − zβ|2

〉
t

= 0 , ∀β ∈ R . (A.4)

It can be shown that for a finite-power time-series z(t) (i.e., with 〈|z(t)|2〉t < ∞) the set B
4
=

{β ∈ R : zβ 6= 0} is countable, the series
∑

β∈B |zβ|2 is summable [2], and from (A.3) it follows
that

lim
T→∞

∑
β∈B

zβ(t)T ej2πβt =
∑
β∈B

zβ e
j2πβt (t.m.s.s.) . (A.5)

Note that the right-hand side in (A.5) is just the almost-periodic component contained in the
time-series z(t).

It is worth to underline that, in the FOT probability framework, the variance of the estimators
is defined in terms of the almost-periodic component extraction operation, which plays the same
role played by the statistical expectation in the stochastic process framework [4], [5]. Thus,
unlike the stochastic process framework, where the variance accounts for fluctuations of the
estimates over the ensemble of sample paths, in the FOT probability framework the variance
accounts for the fluctuations of the estimates in the time parameter, e.g., the central point of
the finite-length time-series segment adopted for the estimation. Therefore, the assumption
that the estimator asymptotically approaches the true value (the infinite-time average) in the
mean-square sense is just equivalent to the statement that the variance of the estimator in the
FOT probability sense approaches zero as the collect time approaches infinity. That is, for such
time-series, estimates obtained by using different time segments are asymptotically independent
of the central point of the segments.
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